Cascadia Analytics brings expert-level skills and a diverse toolbox to our projects.
R Ecosystem
- Base R
- Tidyverse (dplyr, purrr)
- ETL / Data munging
- ggplot2
- Dashboards (Shiny, OpenCPU, flexdashboards, htmlwidgets)
- Spatial packages (sp, rgdal/rgeos)
Machine Learning Techniques
- Linear and Non-Linear Regression
- Classification Models (Logistic Regression, Random Forest, SVM)
- Factor / Cluster / Principal Component Analysis
- Natural Language Processing
Software Engineering
- Java / J2EE
- Python
- Javascript Frameworks (Node.js, jQuery, Angular)
- Search (Lucene/Solr)
- Integration/messaging (Apache Camel, Apache Karaf, Apache CXF)
- Build/CI (Maven, Jenkins)
Databases and "Big Data" Technologies
- SQL Databases (MySQL, Postgres, Oracle, Microsoft SQL Server)
- No-SQL Databases (MongoDB)
- Graph Databases (neo4j)
- Apache Spark
Data Warehousing
- Star Schema design and implementation
- Pentaho stack (Kettle, Mondrian, Pentaho CTools)
- ETL / Loading pipeline design and implementation
Docker Ecosystem
- Docker image implementation
- Microservices architecture
- Docker networking and swarm/clustering